SET and MYND domain-containing protein 3 is overexpressed in human glioma and contributes to tumorigenicity.

نویسندگان

  • Bin Dai
  • Weiqing Wan
  • Peng Zhang
  • Yisong Zhang
  • Changcun Pan
  • Guolu Meng
  • Xinru Xiao
  • Zhen Wu
  • Wang Jia
  • Junting Zhang
  • Liwei Zhang
چکیده

SET and MYND domain-containing protein 3 (SMYD3) is a histone H3 lysine 4 (H3K4) di- and tri-methyltransferase that forms a transcriptional complex with RNA polymerase II and plays an important role in early embryonic lineage commitment through the activation of lineage-specific genes. SMYD3 activates the transcription of oncogenes and cell cycle genes in gastric and breast cancer cells. However, the contribution of SMYD3 in glioma tumorigenesis remains unknown. Here, we determined the expression of SMYD3 and assessed its clinical significance in human glioma. We found that SMYD3 was overexpressed in human glioma but not in normal brain tissue. The level of SMYD3 protein expression in human glioma tissues was directly correlated with the glioma grade. The level of SMYD3 protein expression in human glioma tissues was inversely correlated with patient survival. Enforced SMYD3 expression promoted glioma LN-18 cell proliferation. Inhibition of SMYD3 expression in glioma T98G cells suppressed their anchorage‑independent growth in vitro and tumorigenicity in vivo. Furthermore, we found that SMYD3 regulated the expression of p53 protein, which is essential in SMYD3‑induced cell growth in glioma cells. These results showed that SMYD3 is overexpressed in human glioma and contributes to glioma tumorigenicity through p53. Therefore, SMYD3 may be a new potential therapeutic target for human malignant glioma.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Critically Regulates the Tumorigenicity of Glioma Cells FoxM1B Is Overexpressed in Human Glioblastomas and Updated Version

The transcription factor Forkhead box M1 (FoxM1) is overexpressed in malignant glioma. However, the functional importance of this factor in human glioma is not known. In the present study, we found that FoxM1B was the predominant FoxM1 isoform expressed in human glioma but not in normal brain tissue. The level of FoxM1 protein expression in human glioma tissues was directly correlated with the ...

متن کامل

FoxM1B is overexpressed in human glioblastomas and critically regulates the tumorigenicity of glioma cells.

The transcription factor Forkhead box M1 (FoxM1) is overexpressed in malignant glioma. However, the functional importance of this factor in human glioma is not known. In the present study, we found that FoxM1B was the predominant FoxM1 isoform expressed in human glioma but not in normal brain tissue. The level of FoxM1 protein expression in human glioma tissues was directly correlated with the ...

متن کامل

Expression of a Chimeric Protein Containing the Catalytic Domain of Shiga-Like Toxin and Human Granulocyte Macrophage Colony-Stimulating Factor (hGM-CSF) in Escherichia coli and Its Recognition by Reciprocal Antibodies

Fusion of two genes at DNA level produces a single protein, known as a chimeric protein. Immunotoxins are chimeric proteins composed of specific cell targeting and cell killing moieties. Bacterial or plant toxins are commonly used as the killing moieties of the chimeric immunotoxins. In this investigation, the catalytic domain of Shiga-like toxin (A1) was fused to human granulocyte macrophage ...

متن کامل

SET and MYND domain containing protein 3 in cancer.

Lysine methylation plays a vital role in histone modification. Deregulations of lysine methyltransferases and demethylases have been frequently observed in human cancers. The SET and MYND domain containing protein 3 (SMYD3) is a novel histone lysine methyltransferase and it functions by regulating chromatin during the development of myocardial and skeletal muscle. It has been recently unveiled ...

متن کامل

The MYND domain-containing protein BRAM1 inhibits lymphotoxin beta receptor-mediated signaling through affecting receptor oligomerization.

MYND (myeloid-Nervy-DEAF-1) domains exist in a large number of proteins that are functionally important in development or associated with cancers. We have previously demonstrated that a MYND domain-containing protein, the bone morphogenesis protein receptor-associated molecule 1 (BRAM1), is able to interact with Epstein-Barr virus-encoded latent membrane protein 1 (LMP1), which acts as a consti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Oncology reports

دوره 34 5  شماره 

صفحات  -

تاریخ انتشار 2015